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Abstract

While affine term structure models have long provided a tractable and elegant
framework for capturing interest rate dynamics, the literature has documented a
tension between achieving a good fit to the cross-section of bond yields and capturing
the time-series behavior of first and second moments of yields. We introduce a new
class of no-arbitrage term structure models that incorporates stochastic volatility while
relaxing the rigid structural constraints of traditional affine frameworks. Our approach of
modeling volatility as an almost affine process preserves much of the tractability of affine
models, including approximately linear bond pricing, while offering significantly greater
flexibility in capturing the dynamics of both the conditional means and conditional
volatility of yields. We demonstrate that our models outperform existing affine models
along key dimensions. Interestingly, while existing affine models attribute as much as
80% of term premium variations to changes in yield volatility, our framework assigns a
much smaller share – no more than 20% – to this channel.
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1 Introduction

Affine term structure models (ATSMs), especially those incorporating stochastic volatility,
have long provided a tractable and elegant framework for capturing interest rate dynamics.
A longstanding empirical challenge for affine no-arbitrage term structure models is their
difficulty in simultaneously capturing the cross-sectional and time-series dynamics of bond
yields while also generating plausible time-variation in yields volatility. As observed by
Dai and Singleton (2000) and Dai and Singleton (2002), this is the “tension in matching
simultaneously the historical properties of the conditional means and variances of yields.”
Similarly, Duffee (2002) notes that the functional forms for risk premia are insufficiently
flexible and, as a consequence, the overall goodness of fit “is increased by giving up flexibility
in forecasting to acquire flexibility in fitting conditional variances.”

These observations reflect a structural rigidity in affine term structure models with
stochastic volatility that manifests in empirical trade-offs: while these models may price
bonds accurately under the risk-neutral measure, they often fall short in describing the joint
dynamics of yield levels, slopes, and volatilities under the physical measure. As highlighted in
Joslin and Le (2021), the restrictions linking the volatility structure to the feedback dynamics
of the state vector under both the physical and risk-neutral measures distort the model’s
ability to match key features of the data – most notably, the predictive relationship between
the slope of the yield curve and future rate changes.

This tension is perhaps most transparently revealed through two regression-based diag-
nostics introduced by Dai and Singleton (2002) that focus on the ability of term structure
models to match empirical patterns concerning conditional first moments of yields. The
first test, based on observations of Campbell and Shiller (1991), assesses whether the model
can match the failures of the expectation hypothesis found in the data. Specifically, a term
structure model should match the pattern found in the data between the slope of the yield
curve and future changes in interest rates. The second test builds on this idea assessing
whether adjusting realized changes in yield by model-implied term premia can bring the
predicted change back into line with the expectations hypothesis. Dai and Singleton (2002)
find that the “the requirement that a DTSM match both is a powerful discriminator among
models.” They find in their data that while Gaussian term structure models are able to pass
both of the tests, the general models with stochastic volatility are not able to do so. Their
paper was one of the first to highlight this tension between first and second moments: adding
stochastic volatility to the affine models allowed them to match conditional second moments
but caused the models to fail first-moment tests.

In this paper, we introduce a new class of no-arbitrage term structure models which we
term almost affine models that relax the structural constraints of standard affine models
while preserving analytical tractability. The central innovation lies in modeling volatility
as a nonlinear yet tractable function of the yield factors, such as through a max-linear
transformation. This specification guarantees positive volatility without requiring volatility
factors to be autonomous. Consequently, our framework permits richer interactions between
volatility and the rest of the state vector, breaking the structural rigidity that often impairs
the flexibility of traditional ATSMs.
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Relaxing this type of constraint improves the performance of standard ATSMs along
at least two important ex ante dimensions. First, our model eliminates the restrictive
link between the feedback matrices under the physical and risk-neutral measures. This
decoupling allows the estimation procedure to more accurately target the conditional means
of bond yields without sacrificing cross-sectional pricing accuracy. Indeed, we show that
our almost affine models – across various specifications involving different numbers of yield
and volatility factors – consistently pass the two regression-based diagnostics introduced by
Dai and Singleton (2002), matching the success of pure Gaussian term structure models in
capturing the conditional means dynamics of bond yields.

Second, volatility identification gains substantial flexibility. In conventional affine settings,
as emphasized by Joslin and Le (2021), volatility instruments are subject to stringent
eigenvector constraints that tie them simultaneously to both physical and risk-neutral
feedback matrices. These restrictions significantly limit the model’s ability to capture the
empirical dynamics of yield volatility. In contrast, our framework enables a more flexible and
unconstrained selection of volatility instruments. This not only facilitates better empirical fit
to the volatility structure of yields but also has the potential to improve overall estimation
efficiency – analogous to the well-known gains of generalized least squares over ordinary least
squares.

Importantly, these gains in flexibility and empirical performances are achieved without
sacrificing tractability. By construction, the almost affine framework preserves much of the
analytical convenience of traditional affine models, as bond yields remain approximately
linear in the state variables. Key to obtaining this approximation is our requirement that the
max-linear transformation linking yield factors to volatility binds only infrequently inside the
model. This design ensures theoretical admissibility of the volatility process while keeping the
pricing implications close to those of a fully linear model. We show that yield approximation
errors across the full maturity spectrum and over the entire sample period are economically
negligible, typically on the order of one basis point or less.

With their ability to price bonds accurately while simultaneously fitting both the condi-
tional means and variances of bond yields, the proposed almost affine models offer a powerful
framework for exploring fundamental questions about risk and return trade-offs in fixed
income markets. When applied to the decomposition of term premium variation, the almost
affine framework reveals a stark contrast with its conventional affine counterparts.

Figure 1 illustrates the proportion of time variation in term premiums attributable to
interest rate volatility – the so-called “quantity of risk” channel – across models with different
numbers of yield pricing factors (N) and volatility factors (m). For all model specifications and
at both 5-year and 10-year horizons, the conventional affine models imply a near-mechanical
link between volatility and term premium dynamics, attributing up to 80-90% of the variation
to changes in yield volatility. By contrast, the almost affine models consistently attribute a
much smaller share – no more than 20% – to the quantity of risk.

This striking divergence underscores a key implication: most of the variation in term
premiums under the almost affine framework arises not from changes in volatility per se, but
from shifts in the market price of risk, such as evolving risk aversion, investor sentiment, or
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Figure 1: The share of interest rate volatility (in percentage) in explaining the time variation
in term premiums implied by models with different number of yield pricing factors (N) and
volatility factors (m).

macroeconomic conditions. The finding is robust across specifications (N = 3 or 4; m = 1
or 2), and across horizons, suggesting that relaxing the structural rigidity of affine models
enables a more nuanced understanding of what drives bond risk premia.

Our paper contributes to the literature on no-arbitrage term structure models, and more
specifically, to the strand that incorporates stochastic volatility into affine frameworks to
better capture the joint dynamics of bond yields and risk premia. Foundational work by
Duffie and Kan (1996), Dai and Singleton (2000), Dai and Singleton (2002), and Duffie, Pan,
and Singleton (2000) established the analytical tractability and pricing implications of affine
models, which have since become a cornerstone of the term structure modeling literature.
Building on this foundation, many studies – including Collin-Dufresne and Goldstein (2002),
Collin-Dufresne, Goldstein, and Jones (2008), Cheridito, Filipovic, and Kimmel (2007), and
Duffee (2002) – have examined the role of stochastic volatility specification in improving the
empirical performance of these models, particularly in explaining yield curve dynamics, bond
return volatility, and the pricing of interest rate derivatives.

Two recent papers that are particularly relevant to our work are Joslin and Le (2021)
and Doshi, Jacobs, and Liu (2024). Joslin and Le (2021) identify a fundamental structural
rigidity in conventional affine term structure models – a source of restrictiveness that our
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almost affine framework is specifically designed to address. While they explore several model
variants that partially relax this constraint, those formulations are intentionally simplified
for illustrative purposes. For instance, some of the models considered do not impose the no-
arbitrage restrictions central to the ATSM literature, while others assume constant volatility
under the risk-neutral measure despite allowing time-varying volatility under the physical
measure. These simplifying assumptions, while helpful for exposition, limit the empirical
applicability of those models. Our framework offers a fully specified, no-arbitrage model that
accommodates flexible volatility dynamics under both measures.

Doshi, Jacobs, and Liu (2024) develop a no-arbitrage affine term structure model in which
volatility factors follow GARCH-type dynamics. Strictly speaking, their model belongs to a
restricted subclass of ATSMs in which innovations to the volatility factors are functionally
tied to the innovations in the yield factors. In contrast to our paper, their focus is quite
different. They emphasize the role of volatility identification in the estimation of ATSMs
and explore the implications of their framework for pricing interest rate derivatives. Our
analysis, by comparison, is centered on the interaction between yield predictability, bond
risk premia and stochastic volatility. While they also investigate the implications of their
model for the Campbell and Shiller (1991) regression, their approach appears to be in-sample,
whereas our analysis – consistent with much of the term structure literature – examines the
population-level implications of this regression.

The remainder of the paper is organized as follows. Section 2 revisits the sources of tension
in standard ATSMs and motivates the need for a more flexible approach. Section 3 introduces
the almost affine modeling framework and outlines its theoretical properties. Section 4
discusses the role of no-arbitrage and its implications for the model’s dynamics. Section 5
presents our empirical implementation, including estimation results, model diagnostics.
Section 6 provides analysis of the model-implied predictive regressions and term premium
decomposition. Section 7 concludes.

2 The sources of tension in no-arbitrage affine term

structure models

A longstanding empirical challenge for affine no-arbitrage term structure models is their
difficulty in simultaneously capturing the cross-sectional and time-series dynamics of bond
yields while also generating plausible time-variation in yields volatility. As observed by
Dai and Singleton (2000) and Dai and Singleton (2002), this is the “tension in matching
simultaneously the historical properties of the conditional means and variances of yields.”
Similarly, Duffee (2002) notes that the functional forms for risk premia are insufficiently
flexible and, as a consequence, the overall goodness of fit “is increased by giving up flexibility
in forecasting to acquire flexibility in fitting conditional variances.”

This tension is perhaps most transparently revealed through two regression-based diag-
nostics introduced by Dai and Singleton (2002) as the LPY(i) and LPY(ii) regressions. In
particular, LPY(i) assesses whether a model’s implied slope coefficients in Campbell and
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Shiller (1991) regressions – used to predict yield changes based on the slope of the yield curve
– align with the empirical patterns observed across different maturities. LPY(ii) evaluates
whether, after adjusting yield changes for model-implied term premia, the regression slopes
converge to unity, as predicted by the expectation hypothesis.

The remainder of this section explores potential reasons why existing models with stochas-
tic volatility fail to satisfy the LPY diagnostics. Our objective is to identify insights that can
guide the design of a new stochastic volatility term structure model capable of passing both
LPY(i) and LPY(ii) tests. These insights will directly inform the specification introduced in
Section 3.

2.1 LPY(i): Yield changes and the slope of the yield curve

The LPY(i) regression focuses on the predictive power of the yield curve slope for future
changes in yields, based on the Campbell and Shiller (1991) regression:

Rn−1
t+1 −Rn

t = α + β · 1

n− 1
(Rn

t − rt) + εt (1)

where Rn
t denotes the continuously compounding yield on a risk-free n-period zero coupon

bond and rt = R1
t is the one period short rate.

If the expectation hypothesis holds, the regression coefficient β should equal unity for
all maturities n. However, empirical estimates of β typically deviate markedly from this
prediction – often negative and declining with maturity – contradicting the expectation
hypothesis. The negative coefficients indicate that a steeper yield curve (i.e. a higher slope)
tends to predict declines in future yields. Moreover, the downward-sloping pattern of β across
maturities is consistent with the mean-reverting nature of the slope: a higher slope today
tends to lead to lower future slopes. This effect becomes more pronounced at longer maturities,
as long-term yields by construction load more heavily on the slope factor. Consequently, the
β coefficients become increasingly negative with maturity.

To replicate this empirical pattern, a model must possess sufficient flexibility to allow
current slopes to predict future movements in level factors. It must also be able to generate
the appropriate degree of mean reversion in the slope factor to match the observed term
structure of β coefficients.

In practice, standard no-arbitrage affine models with stochastic volatility often struggle
to reproduce the empirical regression coefficients. Interestingly, models that come closest
to matching the observed patterns are pure Gaussian specifications, which assume constant
volatility. As is shown by Dai and Singleton (2002), introducing higher dimensional volatility
dynamics tends to hinder, rather than help, the model’s ability to capture this feature of the
data.

Joslin and Le (2021) show that the mechanism underlying this tension can be understood by
studying what Dai and Singleton (2000) call admissibility restrictions. These are restrictions
necessary to ensure that the volatility factors remain strictly positive with probability one.
In an affine setting, admissibility rules out any linear dependence of the volatility forecasts on
non-volatility factors because such linear dependence can imply negative volatility forecasts.
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For example, an admissible affine model with one volatility factor, Vt, and one conditional
Gaussian factor, Gt, cannot allow the conditional expectation from taking the linear form
Et[Vt+1] = a+ bVt + cGt for any non-zero c since this implies a positive probability that the
volatility forecast, Et[Vt+1], might be negative. This means that, to remain strictly positive,
the conditional means of the volatility variables can only depend on their own lagged values.
In other words, the volatility factors must have an autonomous structure.

To see how an autonomous structure for the volatility factors can be restrictive, recall
that, except for knife-edge cases, one can always express the volatility factor as a linear
function of the principal components of yields (level, slope in our example). Let Pt denote a
2-element vector obtained by stacking up the slope, level factors, we write:

Vt = α + βPt.

Additionally, due to the affine structure of the model, the conditional means of Pt must take
a linear form:

Et[Pt+1] = K0 +K1Pt.

For Vt to be autonomous, certain restrictions need to be imposed on the feedback matrix
K1 and the loading vector β. For example, consider fixing β at (1, 0) so that Vt corresponds
to the first entry of Pt – the level factor. In this case, the autonomous restriction requires
that the level factor follow an AR(1) process. This requires that the (1,2) entry of the
feedback matrix K1 constrained to zero, precluding the slope from predicting the level. Such
a constraint may be overly restrictive, as matching Campbell and Shiller (1991) evidence
does require that the slope factor, in fact, forecast future changes in level.

More generally, it can be shown that the restriction between K1 and β takes the form:
βK1 = cβ where c is some scalar meaning that β must be a left eigenvector of the feedback
matrix K1.

1

A risk-neutral analogue of this condition must also hold, as admissibility must be satisfied
under both the physical and the risk-neutral measures. That is, β must also be a left
eigenvector of the risk-neutral feedback matrix KQ

1 , where EQ
t [Pt+1] = KQ

1 Pt + constant.2

Enforcing admissibility, therefore, amounts to requiring K1 and KQ
1 to share a common left

eigenvector.
This requirement introduces a fundamental tension. As Joslin and Le (2021) emphasize,

the cross-section of bond prices provides sharp identification of risk-neutral dynamics, meaning
that KQ

1 is tightly estimated with little reliance on time-series data. When the common-
eigenvector restriction is binding, as often is the case in the data, then the estimate of the
physical dynamics K1 must accommodate the empirically accurate KQ

1 , even at the cost
of poor time-series fit. The distorted time-series estimates in turn lead the model to fail
in reproducing the observed pattern of β coefficients in the Campbell and Shiller (1991)
regression.

1The AR(1) structure of Vt requires that Et[Vt+1] = cVt + constant for some scalar c. Substitute V by
βP, it follows that βEt[Pt+1] = cβPt + constant. Using Et[Pt+1] = K0 +K1Pt, we obtain βK1 = cβ.

2Since volatility must remain positive under both probability measures, Vt must be autonomous under the
equivalent-martingale measure as well. Hence, the loading vector β must be a left eigenvector of KQ

1 .
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This insight suggests that a promising strategy for passing the LPY(i) diagnostic is to
relax the tight linkage between K1 and KQ

1 . In fact, in pure Gaussian term structure models
– where time variation in volatility is turned off – the admissibility constraint is non-binding.
As a result, the eigenvector restriction that links K1 and KQ

1 is absent. These models have
been particularly successful at reproducing the empirical LPY(i) patterns. However, their
assumption of constant volatility is clearly counter-factual. The key challenge, then, is to
construct a no-arbitrage model that allows for realistic volatility dynamics while retaining
enough flexibility to match the observed LPY(i) coefficients. We propose such a model in
Section 3.

2.2 LPY(ii): premium adjusted yield changes and the slope of the
yield curve

Since the empirical LPY(i) pattern indicates a departure from the expectation hypothesis, Dai
and Singleton (2002) argue that properly adjusting bond yields for time-varying risk premia
should bring the regression coefficients β closer to unity, as predicted by the expectation
hypothesis. Building on this logic, they introduce a premium-adjusted version of the LPY(i)
regression – referred to as the LPY(ii) regression:

Rn−1
t+1 −Rn

t +
nTP n

t − (n− 1)TP n−1
t+1

n− 1
= α + β · 1

n− 1
(Rn

t − rt) + εt (2)

where the term premium TP n
t is defined as

TP n
t = Rn

t −
1

n

n−1∑
i=0

Et[rt+i]. (3)

If the estimated β coefficients in equation (2) are close to unity, it provides evidence that
the model is correctly capturing time-varying risk premia.

In differentiating the contributions of the two diagnostics, Dai and Singleton (2002) state
the following:

Matching LPY(i) says that the DTSM describes the historical behavior of
yields under the actual measure P; while matching LPY(ii) says that the DTSM
essentially has the dynamics “right” under the risk-neutral measure Q used in
pricing bonds. We show that these properties are not equivalent, and that the
requirement that a DTSM match both is a powerful discriminator among models.

To understand why matching LPY(ii) implies that a model generates the “correct” risk-
neutral dynamics, it is essential to recall the fundamental linkage among risk premia, historical
dynamics, and risk-neutral dynamics. Intuitively, risk premia arise from the difference between
the P- and Q-dynamics. Therefore, if a model accurately captures any two of the three
components, the third is essentially determined. For instance, if the model correctly specifies
the historical dynamics – thereby matching the LPY(i) regression – and also generates
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realistic term premia – thus matching LPY(ii) – then it must necessarily produce the correct
Q-dynamics. In this sense, the interpretation that success in capturing LPY(ii) reflects
accurate Q-dynamics implicitly relies on the assumption that the model already successfully
matches LPY(i).

But what should we make of a model that matches LPY(ii) while failing to match LPY(i)?
This situation arises in the estimated A1(3) model reported by Dai and Singleton (2002).
While the model succeeded in producing LPY(ii) coefficients that were somewhat close to
unity, it failed to reproduce the empirical LPY(i) regression coefficients, indicating a poor fit
for the historical dynamics. This raises an important question: can evidence from LPY(ii) be
meaningfully interpreted on its own, or does its validity necessarily depend on the model first
passing LPY(i)?

To this extent, we propose a new perspective on studying the LPY(ii) regression. First,
note that with some algebra we can rewrite the left hand side of LPY(ii) as:3

Rn−1
t+1 −Rn

t +
nTP n

t − (n− 1)TP n−1
t+1

n− 1
=

1

n− 1
(Rn

t − rt) +
1

n− 1

n−1∑
i=1

(Et+1 − Et)[rt+i]. (4)

Equation (4) suggests that the premium adjusted yield change used in LPY(ii) is simply
the sum of the yield curve slope and a forecast revision term. As a result, an alternative
implementation of LPY(ii) can be obtained through the following regression:

1

n− 1

n−1∑
i=1

(Et+1 − Et)[rt+i] = α + (β − 1) · 1

n− 1
(Rn

t − rt) + εt. (5)

In this form, we see that LPY(ii) is really a regression of slope predicting revisions in
the forecasts. This representation provides a seemingly straightforward interpretation of
the LPY(ii) evidence. When the estimated β coefficients deviate from unity, it indicates
that revisions in short-rate forecasts are predictable from the slope of the yield curve. This
predictability implies that the model-implied forecasts are inconsistent with full-information
rational expectations, as they can be improved by incorporating information embedded in
the slope. Conversely, when the β estimates are close to unity, it suggests that the model has
efficiently utilized the slope factor in forming its short-rate forecasts.

3The log excess return on an n-period bond can be expressed as:

log excess returnn
t+1 = nRn

t − (n− 1)Rn−1
t+1 − rt.

This expression can be rewritten as:

nTPn
t − (n− 1)TPn−1

t+1 +

n−1∑
i=1

(Et − Et+1)[rt+i].

To derive this second expression, we substitute the decomposition of yields into their term premium and
expected short-rate components, as given by equation (3), into the original expression. The equivalence
between the two lines yields the identity shown in equation (4).
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Nevertheless, this simple interpretation of LPY(ii) is complicated by the fact that, in
practice, equation (5) uses a model-implied forecast revision on the right-hand side, while the
regressor (the slope) is directly observed from the data.4 Consequently, we must consider
the possibility that the model may not adequately capture the slope factor, and thus may
misrepresent the right-hand side variable in (5).

We consider the following possibilities:

1. Suppose the state vector Xt does not accurately capture the slope factor. Further,
assume that forecasts of Xt+n are fully flexible. In this case, conditioning on the slope
will generally improve forecast accuracy and allow for the prediction of forecast revisions.
Specifically, the difference Et+1[Xt+s]−Et[Xt+s] is not predictable using information in
Xt alone, but becomes predictable when incorporating the slope, since the slope lies
outside the information set spanned by Xt.

This scenario is particularly relevant for macro-finance term structure models that
include perfectly observed macroeconomic variables and a single latent factor. These
models are studied in Joslin, Le, and Singleton (2013). Due to the presence of only
one latent variable, such models typically succeed in capturing the level factor but
fail to accurately price slopes. As a result, while these models may match the LPY(i)
regression, they are generally unable to match the LPY(ii) regression.

2. Suppose a model features a state vector Xt that accurately captures the slope factor.
Further, assume that forecasts of Xt+n are fully flexible, meaning there are no restrictions
on identifying K1. Under these conditions, the model’s forecasts of the short rate will
optimally incorporate information from the slope factor. This optimality implies that
slopes cannot be used to predict revisions in short-rate forecasts, and therefore, the
LPY(ii) will hold. In this case, the estimated β coefficients will be close to unity.

3. Suppose the model adequately captures the slope factor but fails to generate fully
flexible forecasts, for example due to the left eigenvector constraint discussed in Joslin
and Le (2021). In this case, the implications for LPY(ii) are ambiguous. Generally,
LPY(ii) should not work since one would expect the inefficient model-implied forecasts
revisions can be improved by incorporating slopes. This is the case for many AM(N)
models with M > 1 as reported by Dai and Singleton (2002).

However, there is yet another possibility. The model may produce incorrect forecasts,
but the forecast revisions–despite being incorrect–may still appear uncorrelated with
the slope, simply because the slope is not informative about the model’s misspecified
forecast errors.

To illustrate this possibility, suppose the estimated model implies the following empirical
pattern:

1

n− 1

n−1∑
i=1

(Et+1 − Et)[rt+i] = a+ b · curvaturet + noiset+1. (6)

4This issue does not arise with LPY(i), since the LPY(i) regression is conducted entirely within the model
in population.
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This specification clearly violates the full-information rational expectations principle,
as forecast revisions are predictable (by curvature). However, when we implement the
LPY(ii) regression in equation (5) in the context of the model in equation (6), we
effectively project curvature on slope. Since curvature and slope are orthogonal in
sample, by construction, this projection yields a zero coefficient on slope–i.e., (β−1) = 0,
implying β = 1.

In this case, the model will appear consistent with LPY(ii) not because it generates
efficient forecasts, but because the slope factor is empirically uncorrelated with the
variable that contains predictive power for its forecast revisions.

Turning back to the A1(3) model reported in Dai and Singleton (2002), it is notable that
LPY(i) does not work but LPY(ii) appears to work reasonably well. How can this be? In the
LPY(i) regression, the model’s estimated coefficients are close to unity, indicating that the
slope factor does not meaningfully predict future level factors. That is, the left-eigenvector
constraint induced by the admissibility restrictions makes it so that that the feedback from
slope to level is much weaker than required by the data. However, this very disconnect
between today’s slope and future levels may explain why LPY(ii) appears to work. The model
optimal forecast of the change in level does not depend on the slope factor. Consequently,
when we regress revisions in the model’s optimal forecasts of the short rate on the slope, the
estimated coefficient is zero. This leads LPY(ii) to ”work” in the model even as LPY(i) fails.

This example highlights a rather simple but important point: LPY(ii) singularly focuses
on the empirical slope factor in testing the efficiency of a model’s implied forecasts. However,
a more comprehensive diagnostic can be obtained by incorporating all the relevant factors.
Specifically, consider the regression:

1

n− 1

n−1∑
i=1

(Et+1 − Et)[rt+i] = a+ b · Pt + noiset+1 (7)

where Pt denotes the state vector, stacking up all the relevant principal components of bond
yields. The appeal of this regression lies in its unambiguous interpretation. As long as Pt is
reasonably accurately priced (which is typically the case with N ≥ 3), any finding that b 6= 0
constitutes direct evidence against the efficiency of the model-implied forecasts. On the flip
side, failure to reject b = 0 is clear evidence supporting the model.

In the next section, we formally develop a new no-arbitrage model. A key innovation of
our setup is the modeling of volatility as a nonlinear function of the state variables, which
ensures positive volatility without imposing an autonomous structure on any component of
the state vector. Drawing on the insights of Joslin and Le (2021), we argue that this feature
helps resolve the type of tension that has plagued many existing models. We confirm this
conjecture empirically and show that the proposed model offers improvements over traditional
affine frameworks across several important dimensions. In particular, it delivers meaningful
time-varying volatility of yields without sacrificing forecasting flexibility.
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3 Model

3.1 The general setup

The state variable Xt is an N × 1 vector and is assumed to follow the following dynamics
under the risk-neutral (Q) measure:

Xt+1 =KQ
0X +KQ

1XXt + εQt+1 with εQt+1 ∼ N(0,Σ0,X +
M∑
i

Σi,XZi,t), (8)

where the volatility factor Zt is an M × 1 vector, related to Xt through:

Zt = max(0, αX + βXXt). (9)

We require that Σi,X (i = 0..M) be positive semidefinite. With Zt bounded below at zero, this
requirement ensures that the conditional variance of Xt+1 will be strictly positive definite.

Assuming that the short rate is linear in the state variables:

rt = δ0 + δX ·Xt, (10)

the time-t price of an n-period bond is given by:

Pn,t = EQ
t [exp(−rt − rt+1 − ...− rt+n−1)]. (11)

To complete the model, we assume that the time series dynamics of Xt is given by:

Xt+1 =KP
0X +KP

1XXt + εt+1 with εt+1 ∼ N(0,Σ0X +
M∑
i

Σi,XZi,t). (12)

Several remarks about our modeling choices are in order. First, volatility in this model –
driven by max(0, αX + βXXt) – is guaranteed to remain non-negative for all realizations of
the state vector Xt. As a result, admissibility conditions are naturally satisfied without any
additional structure on the conditional dynamics of of Xt (under either P or Q). In contrast
to many existing affine models with stochastic volatility, our specification does not impose
any restrictions linking the volatility loading vector, βX , to the feedback matrices, KP

1X and
KQ

1X . This separation offers greater modeling flexibility, enabling the conditional mean of
yields to be fit without compromising the model’s ability to capture conditional volatility.

Second, our framework nests the Gaussian term structure models as a special case.
Specifically, by setting Σi,X(i = 1..M), αX , and βX , to zeros, the time varying component of
volatility is turned off. With constant volatility, our model reduces exactly to the Gaussian
setup of Joslin, Singleton, and Zhu (2011). This nesting property will allow us to conduct
formal statistical tests that compare the fit of our model relative to the Gaussian benchmark.

Third, because volatility is modeled nonlinearly, the conditional variances in our setup
are no longer strictly affine functions of the state variables. This departure from linearity
precludes strictly closed-form solutions for bond prices. In the next subsection, we introduce
an approximation method that yields bond prices that are exponentially affine in the state
vector Xt, thus preserving analytical tractability to a useful extent.
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3.2 Approximate bond prices

The only source of nonlinearity in our model arises from the specification of Zt:

Zt = max(0, αX + βXXt). (13)

To simplify the analysis, we begin by assuming that αX + βXXt rarely falls below zero,
such that the nonlinearity introduced by the max(·) operator is seldom binding. Under this
assumption, a natural approximation is to treat Zt as a linear function of the state vector Xt,
i.e.,

Zt ≈ αX + βXXt. (14)

This approximation restores linearity to the conditional means and variances of Xt, effectively
returning us to the affine class of models where standard bond pricing results apply. In
particular, it can be shown that the n-period bond yield is approximately linear in the state
variables:

yn,t ≈ An +BnXt, (15)

where An and Bn are determined by standard recursive equations.5

If, however, the probability that αX + βXXt becomes negative is non-negligible, then
bond yields implied by the model will be substantially nonlinear in the state vector, rendering
the linear approximation inadequate. To avoid this complication, we restrict the parameter
space to ensure that the probability of negative realizations of αX + βXXt is small. This
allows us to maintain the approximate linear form in (15), which greatly facilitates empirical
implementation.

We acknowledge that this modeling choice limits us to a subset of the general class of models
introduced in Section 3.1. Thus, our approach reflects a tradeoff between implementation
tractability and generality. Importantly, we will demonstrate that this tradeoff is well-justified:
the models we study, although “almost affine,” offer substantially greater richness along
several dimensions than many existing affine term structure models. Fully exploring the more
nonlinear regions of the model’s parameter space is potentially promising but left for future
research.

In practice, there are various ways to ensure that the probability of negative realizations
of αX + βXXt remains low. For instance, one approach is to constrain model parameters so
that such realizations occur less than, say, 1% of the time. For tractability, we estimate our
models under the constraint that αX + βXXt remains nonnegative in-sample. Additionally,
to avoid undesirable behaviors under the pricing measure, we require that the Q-dynamics
be non-explosive.

Similar approximate arguments have been used in many related contexts, though their
accuracy can vary depending on the specific application. In our case, we systematically assess

5To quickly see this, note that Xt is conditionally Gaussian thus its conditional Laplace transform is
exponentially linear in its means and variances. Furthermore, the first two conditional moments of Xt+1 are
both linear in Xt, thus we can write: EQ

t [exp(u ·Xt+1)] = exp(a(u) + b(u) ·Xt) where a(.) and b(.) depend
on other risk neutral parameters. Standard risk-neutral pricing then shows that:

An = δ0 +An−1 − a(−Bn−1), and Bn = δX − b(−Bn−1).
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the quality of the approximation and find that, across a range of parameterizations and yield
maturities, the approximation errors are economically negligible – typically on the order of 1
to 2 basis points.

3.3 Econometric identification

A key feature of the model introduced in Section 3.1 is the flexibility to shift, rotate, and scale
the state vector Xt to obtain observationally equivalent variants of the model.6 We exploit
this property to impose normalizations that enable econometric identification. Importantly,
the ability to linearly transform the state vector is independent of whether we adopt a linear
or nonlinear specification. Hence, the identification strategy applies even to nonlinear variants
of the model.

To be specific, let Θ denote the full set of model parameters:

Θ =
(
K

(j)
0X , K

(j)
1X ,Σi,X , αX , βX , δ0, δX

)
,

where i = 0, . . . ,M and j ∈ {P,Q}. Consider a linear transformation of the state vector of
the form

X̃t = U0 + U1Xt.

Since the state space is unbounded, this transformation is unrestricted—just as in standard
Gaussian models—implying no sign or zero constraints on U0 and U1. The transformed

parameter set, Θ̃ =
(
K̃

(j)
0X , K̃

(j)
1X , Σ̃i,X , α̃X , β̃X , δ̃0, δ̃X

)
, is related to the original parameters

via the following mappings:

K̃
(j)
0X = U0 + U1K

(j)
0X − (U1K

(j)
1XU

−1
1 )U0, (16)

K̃
(j)
1X = U1K

(j)
1XU

−1
1 , (17)

Σ̃i,X = U1Σi,XU
′
1, for i = 0, . . . ,M, (18)

α̃X = αX − βXU−11 U0, β̃X = βXU
−1
1 , (19)

δ̃0 = δ0 − δXU−11 U0, δ̃X = δXU
−1
1 . (20)

Econometric identification is achieved by imposing restrictions that eliminate this in-
variance such that further shifts, rotations, or scalings of Xt would violate the constraints.
Following Joslin, Singleton, and Zhu (2011), we impose the following normalizations on the
risk-neutral dynamics:

1. KQ
0 = 0;

2. KQ
1 is in Jordan canonical form;

3. δX is a vector of ones.

6Observationally equivalent models are models whose implied yields are identical state by state. For
details, see Duffie and Kan (1996) and Dai and Singleton (2000).
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The first condition centers the risk-neutral dynamics at the origin. The second prevents
arbitrary rotations of the state vector, while the third fixes the scale of the state variables.
With these normalizations, the long-run risk-neutral mean of Xt is zero, and the intercept in
the short rate equation,

rt = rQ∞ + ι′Xt, (21)

where ι is a vector of ones, corresponds to the long-run risk-neutral mean of the short rate,
which we denote as rQ∞ ≡ δ0.

Up to this point, our normalization scheme mirrors that of Joslin, Singleton, and Zhu
(2011) for Gaussian models. However, our setting includes a volatility component Zt, which
requires additional restrictions. In particular, Zt can be freely scaled: for instance, doubling
both αX and βX while halving all Σi,X (for i = 1, . . . ,M) leaves the conditional variance of
Xt unchanged, state by state. Thus, to ensure full identification, we must also fix the scale of
Zt.

The precise way we normalize Zt will be discussed in Section 5, where we describe our
empirical implementation.

3.4 Notation

To distinguish our framework from existing models and emphasize its “almost affine” structure,
we refer to our specification as AAM (N) where N and M are the dimensions of state variables
Xt and the volatility factors Zt, respectively. In contrast, to reference the existing no-arbitrage
affine models, we use the standard notation AM (N). In particular, A0(N) refers to Gaussian
affine models with constant volatility while AM (N) with M > 0 corresponds to affine models
with stochastic volatility.

Throughout the remainder of the paper, we will work extensively with the approximately
linear yield pricing equation introduced in equation (15). For brevity, we will refer to this as
the “linear pricing equation,” omitting the qualifier “approximately.” It should be understood,
however, that this expression is an approximation. We will later verify that the resulting
approximation errors are economically negligible.

4 The no-arbitrage constraints and yield dynamics

One important issue that has been studied extensively in the term structure literature is
whether the imposition of the no-arbitrage conditions can lead to improvement in forecasting
performance. In the context of Gaussian term structure models, Joslin, Singleton, and Zhu
(2011) and Duffee (2011) derive an important result: that the no-arbitrage constraints are
essentially inconsequential for model-implied yield forecasts. By contrast, Joslin and Le
(2021) find that for the AM(N) models with M > 0, the no-arbitrage conditions have an
overarching impact on the dynamics of yields. In the remainder of this section, we study the
implications of no-arbitrage for our model.
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4.1 Rotation from latent states to the principal components of
bond yields

The role of no-arbitrage in term structure models is reflected through a set of cross-sectional
restrictions imposed on the yield pricing equation. Consider a vector version of equation
(15): Yt = AX + BXXt where Yt is any vector of yields. Under the no-arbitrage condition,
the loading matrices AX and BX are not freely estimated parameters. Instead, they are
constrained by a set of cross-equation restrictions that are functions of the risk-neutral
parameters ΘQ, which govern the risk-neutral dynamics of Xt.

In models where the states are latent, these latent factors are typically inferred from the
cross-section of yields using the pricing equation above. Specifically, the latent state Xt can
be extracted from any N linear combinations of yields and the associated loading functions,
AX(ΘQ) and BX(ΘQ). As a result, the risk-neutral parameters ΘQ, and thus the no-arbitrage
condition itself, directly influence how the latent states are identified from the data.

Joslin, Singleton, and Zhu (2011) show that one can conveniently study the role of
no-arbitrage by rotating the model to an observationally equivalent representation in which
the state variables are portfolios of yields. When the states are observable in this way,
their identification becomes unambiguous, and the no-arbitrage restrictions affect only the
cross-sectional structure of the pricing equation, not the identification of the states themselves.

This rotation is made possible by the linearity of yields in the state vector. Let Pt = WYt
be a vector of N -yield portfolios, where W is a fixed matrix of loadings. Then Pt remains a
linear function of Xt: Pt = WAX +WBXXt. By applying the linear transformation outlined
in equations (16-20) (with U0 = WAX and U1 = WBX), we rotate the model from latent
states Xt to the observable yields portfolios Pt.

In this rotated representation, the pricing equation becomes:

Yt = AP +BPPt (22)

and the state dynamics of Pt follow:

Pt+1 =KP
0P +KP

1PPt + εP,t with εP,t ∼ N(0,Σ0P +
M∑
i

Σi,PZi,t). (23)

where the volatility factor is given by Zt = max(0, αP + βPPt).
7

Joslin, Le, and Singleton (2012) propose a particularly useful choice for the loading matrix
W : selecting Pt to correspond to the first N principal components of bond yields. They
show that this choice results in highly accurate identification of Pt even when individual
yields are measured with noise. The intuition is that the principal components of bond yields
represent “well-diversified” portfolios of yields, which naturally average out idiosyncratic
observational errors associated with individual bonds. Indeed, Joslin, Le, and Singleton (2012)
demonstrate that estimates obtained under the assumption that Pt is observed perfectly

7It can be shown that BP = BX(WBX)−1 and AP = AX − BPWAX . Other parameters are derived
using equations provided by (16-20).
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are nearly identical to those obtained via Kalman filtering when allowing for noisy yield
observations.8

Motivated by these findings, we adopt this approach in our analysis. For the remainder of
the paper, we assume that Pt consists of the first N principal components of the yield curve.
We further assume that these portfolios are observed without measurement error.

4.2 The impact of no-arbitrage on model-implied forecasts

Due to the VAR(1) structure of the time series dynamics of Pt in (23), the conditional
forecasts of Pt+h at any horizon h, are dependent on the conditional means parameters, KP

0P
and KP

1P , the current value of Pt and the horizon h. Since Pt is observed, the impact of
no-arbitrage on model-implied forecasts of the factors Pt+h must be through its impact on
the estimates of KP

0P and KP
1P .

It is important to note that KP
0P and KP

1P are pure time-series parameters. These
parameters only govern the time-series evolution of the factors Pt but do not appear in
the pricing equation (22). As such, they are completely inconsequential for the pricing
performance of the model can be estimated from the time series dynamics of Pt, independent
of the no-arbitrage condition. Specifically, equation (23) implies that KP

0P and KP
1P can be

estimated via a generalized least squares (GLS) regression of Pt+1 onto Pt, accounting for
the heteroskedasticity in the innovations. Denote the conditional variance of the time series
innovation εP,t by Σt (= Σ0P +

∑M
i Σi,PZi,t), the GLS estimates can be obtained as:

vec
(

[K̂P
0P , K̂

P
1P ]
)

= ET [P̃tP̃ ′t ⊗ Σ−1t ]−1ET [P̃tP ′t+1 ⊗ Σ−1t ] vec(IN), (24)

where P̃t = (1,P ′t)′; ET [.] denotes sample averages; and IN denotes an N ×N identity matrix.
Equation (24) generalizes the ordinary least squares (OLS) estimator to account for time-

varying volatility. In the special case where volatility is constant (by setting ΣiP (i = 1..M)
or βP to zeros), the expression simplifies considerably. Due to the constancy of Σt, the two
inverse variance terms (Σ−1t ) can be brought outside of the ET [.] operators and perfectly
cancel, yielding the standard OLS formula::

[K̂P
0P , K̂

P
1P ] = ET [Pt+1P̃ ′t]ET [P̃tP̃ ′t]−1. (25)

Equation (25) underpins one of the main results of Joslin, Singleton, and Zhu (2011) in the
constant volatility setting: that the no-arbitrage constraint has no bearing on the forecasts of
yield factors. Since the risk-neutral parameters in ΘQ do not appear in (25), the no-arbitrage
restriction cannot influence the estimates of KP

0P and KP
1P and hence has no effect on the

model’s factor forecasts.
However, when volatility is time-varying, the invariance result no longer holds. Equation

(24) shows that the estimation of KP
0P and KP

1P is influenced by the time variation in Σt. The

8One caveat is that Joslin, Le, and Singleton (2012) study Gaussian term structure models with constant
volatility. However, their argument (that “well-diversified” portfolios of yields benefit from the cancellation
of observational errors of individual yields) is likely to hold for different volatility structures.
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parameters driving this variation, such as Σi,P ’s and βP , also enter the pricing equation (22).
Therefore, enforcing the no-arbitrage constraint, which imposes cross-sectional restrictions
through equation (22), provides a source of identification for these variance parameters. In
turn, this can have an impact on the estimates of KP

0P and KP
1P .

How economically significant is this impact? The answer depends on how strongly the
cross-sectional pricing restrictions identify the variance parameters. While this is ultimately
an empirical question, a reasonable conjecture is that the no-arbitrage condition plays a
relatively minor role. The rationale is that the variance parameters typically affect yield
pricing through the Jensen effect whose economic magnitude is often small.

Thus far, our discussion has focused on forecasts of the state vector Pt. To connect this
discussion to the forecasts of yields, we turn to the pricing equation (22), which relates
yields Yt to Pt. For example, the h-period-ahead forecast of the state vector Et[Pt+h] can
be translated to forecasts of yields simply by AP + BPEt[Pt+h]. This relationship implies
that the no-arbitrage condition can influence yield forecasts either through its impact on
the factor forecasts or through the pricing loadings AP and BP . However, prior work (e.g.,
Duffee (2011)) has shown that the no-arbitrage constraint typically has only a limited effect
on the estimates of these loadings. In practice, the loadings implied by no-arbitrage affine
models tend to be very similar to those obtained from unconstrained regressions of yields on
the factors.

4.3 Summary and comparison to other no-arbitrage affine models

We conclude this section by summarizing our findings and drawing comparisons between our
framework and other no-arbitrage affine term structure models. As discussed in Section 2,
standard affine models with stochastic volatility are subject to a structural constraint implied
by no-arbitrage: the feedback matrices governing the dynamics under the P and Q measures
must share a common left-eigenvector basis. Joslin and Le (2021) show that this condition
places a strong restriction on the estimation of the time-series dynamics, limiting the flexibility
of such models in capturing empirical regularities.

In contrast, our model (AAM(N)) shares key features with the Gaussian affine class
(A0(N)) which assumes constant volatility. Both models are free from the left-eigenvector
restriction: the feedback matrices KP

1P and KQ
1P are completely decoupled. More precisely,

when the principal components of bond yields are used as state variables, the risk-neutral
parameters have no influence on the conditional means under the physical measure, and vice
versa. The parameters KP

0P and KP
1P do not appear in the pricing equations of either model,

underscoring the separation between pricing and time-series dynamics.
In both the AAM(N) and A0(N) frameworks, the variance parameters do affect bond

pricing through the Jensen effects. Consequently, the no-arbitrage constraint serves as one
source of identification for these variance parameters. In the AAM (N) model, since the time-
series parameters KP

0P and KP
1P are estimated via weighted least squares, where the weights

are determined by the conditional variances, the no-arbitrage constraint can potentially have
an indirect effect on the estimates of the conditional means, through the time-variation of
the variances.
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Model Main channel
A0(N) No effect

AM(N) with M > 1 KP
1P and KQ

1P must share a common left-eigenvector basis
AAM(N) with M > 1 Jensen effect through the variance parameters

Table 1: How does no-arbitrage affect ML estimates of conditional means parameters?

However, in the Gaussian case where conditional variances are constant, the weighted least
squares estimation simplifies to ordinary least squares. In this special case, even the indirect
channel through which the no-arbitrage constraint might affect the time-series dynamics
disappears entirely. A summary of our discussion in this section is provided in Table 1.

5 Empirical implementation

5.1 Data

For our empirical analysis, we employ the zero yields dataset constructed by Le and Singleton
(2024). Using the CRSP database, which contains price information for individual U.S.
Treasury coupon bonds, they implement the Fama-Bliss bootstrap method, following the
procedure outlined in the CRSP manual, to generate a consistent panel of zero-coupon bond
yields with maturities extending up to ten years. The sample spans the period from 1973
through 2024. To ensure a degree of homogeneity in the underlying instruments, standard
filters are applied to exclude illiquid securities and bonds with embedded options.

For estimation, we focus on zero-coupon yields with maturities of 6 months, 1 year, 2
years, 3 years, 5 years, 7 years, and 10 years. Bonds with these maturities that are among
the most actively traded in the Treasury market. Our analysis is conducted at a monthly
frequency, using end-of-month observations for each yield maturity. The summary statistics
of the zero yields used in estimation are provided in Table 2.

5.2 Estimation strategy

We obtain parameter estimates of our models via maximum likelihood estimation. Recall our
assumption that the lower order principal components of bond yields, Pt are priced perfectly.
We denote the remaining higher order principal components of bond yields by Pe

t , and its
corresponding loadings matrix by W e such that Pe

t = W e Yt.
Applying the pricing equation (22), Pe

t can be written as a linear function of Pt: Pe
t =

W e(AP +BPPt). For simplicity, we adopt the common assumption that these yield portfolios
are observed with independent and identically distributed Gaussian errors. Using the
superscript o to denote observed quantities, we write:

Pe,o
t =Pe

t + et with et ∼ N(0, σ2
eI). (26)
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6-month 1-year 2-year 3-year 5-year 7-year 10-year

mean 4.66 4.84 5.03 5.21 5.51 5.73 5.92
std 3.57 3.55 3.51 3.45 3.31 3.20 3.05
min 0.02 0.06 0.11 0.12 0.23 0.38 0.53
10th percentile 0.13 0.23 0.48 0.82 1.38 1.74 2.08
median 4.93 4.97 4.92 5.06 5.37 5.60 5.69
90th percentile 9.14 9.50 9.59 9.80 9.98 10.12 10.18
max 16.26 15.81 15.64 15.54 15.28 15.04 15.04
autocorr 99.13 99.15 99.26 99.36 99.38 99.40 99.41

Table 2: Summary statistics of zero bond yields used in estimation. All numbers are in
percentages.

The likelihood of the data (up to constant terms) can be written as:

L =
∑
t

(
−1

2
||Σ−1/2t (Pt+1 −KP

0P −KP
1PPt)||22 −

1

2
log|Σt|

−1

2
||(Pe,o

t − Pe
t )/σe||22 −

1

2
log|σ2

eI|
)
. (27)

The first component of L (the first line of (27)) captures the model’s time series fit, while
the second component (the second line of (27)) reflects the cross-sectional fit. We obtain the
estimates of the model’s parameters by maximizing L. Additional implementation details are
provided in Appendix A.

5.3 Parameter estimates

In this section, we present the parameter estimates of our almost affine models alongside those
of their corresponding affine counterparts. To conserve space, we focus on the three-factor
specifications and relegate the estimates for the four-factor models to Appendix B.

For clarity and organization, we report the estimates of the conditional mean and condi-
tional variance parameters separately. Table 3 summarizes the conditional mean parameters
for three affine models – A0(3), A1(3), and A2(3) – as well as two almost affine models,
AA1(3) and AA2(3).

A notable feature of Table 3 is the striking similarity in the estimates of the risk-neutral
feedback matrix (KQ

1 ) across all five models. This invariance is consistent with findings
reported in Joslin and Le (2021), highlighting the fact that the cross-section of bond yields,
and hence the risk-neutral dynamics, is very strongly identified in the data.

Another key observation concerns the (1,2) entry of the physical feedback matrix (KP
1 ).

In both affine models with stochastic volatility – A1(3) and A2(3) – this entry is positive,
suggesting that the slope factor positively predicts the future level of interest rates. This

20



Risk-neutral parameters Time-series parameters

KQ
0 KQ

1 KP
0 KP

1

A0(3)
0.023 0.999 0.093 0.182 0.125 0.994 -0.019 0.027
-0.009 -0.002 0.962 -0.180 -0.019 0.002 0.961 -0.138
-0.012 -0.001 -0.001 0.951 -0.066 -0.000 0.002 0.866

A1(3)
0.016 1.000 0.092 0.179 0.032 0.995 0.027 0.038
-0.013 -0.002 0.963 -0.179 -0.041 -0.001 0.970 -0.206
-0.011 -0.001 -0.001 0.952 -0.021 -0.001 -0.007 0.917

AA1(3)
0.018 1.000 0.092 0.181 0.083 0.997 -0.001 0.103
-0.011 -0.002 0.962 -0.179 0.018 0.001 0.954 -0.113
-0.012 -0.001 -0.001 0.951 -0.019 -0.001 -0.008 0.920

A2(3)
0.015 1.000 0.094 0.179 0.100 0.994 0.049 0.234
-0.011 -0.002 0.962 -0.177 -0.005 -0.001 0.974 -0.131
-0.010 -0.001 -0.002 0.953 -0.050 -0.001 0.003 0.894

AA2(3)
0.020 1.000 0.091 0.179 0.119 0.997 -0.027 0.080
-0.012 -0.002 0.963 -0.177 0.010 0.001 0.958 -0.116
-0.013 -0.001 -0.001 0.952 -0.042 -0.000 -0.004 0.894

Table 3: 3-factor models: Conditional mean parameter estimates.

implication stands in contrast to the empirical evidence documented by Campbell and Shiller
(1991), who find that higher slopes tend to predict lower future levels. As discussed in Joslin
and Le (2021), this counter-factual result can be traced to a structural constraint imposed by
the no-arbitrage condition in an affine setup, which forces KQ

1 and KP
1 to share some common

left eigenvector basis.
Crucially, our almost affine models (AA1(3) and AA2(3)) are designed to relax this

constraint. The same is true for the purely Gaussian model A0(3). Accordingly, the (1,2)
entries in the physical feedback matrices of these models are negative, aligning with the
empirically observed negative predictive relationship between slope and future level. As we
will demonstrate later, this structural flexibility enables our almost affine models to better
capture the pattern of Campbell and Shiller (1991) regression coefficients observed in the
data.

Table 4 reports the estimated parameters governing the conditional variance of bond
yields implied by our models. Of particular interest are the parameters α and β, which
directly identify the volatility factors.

In the affine models, the volatility factor takes the form α+ β Pt, whereas in our almost
affine models, it is specified as max(α + β Pt, 0). While we impose the condition during
estimation that the max(·) operator never binds in-sample – making the almost affine models
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Panel A: 3-factor models with 1 volatility factor
A1(3) AA1(3)

α -0.95 -0.31

β 1.05 2.86 -6.82 1.00 -1.30 -1.62

chol(Σ0)× 100
24.20 36.88
8.15 0.09 20.22 6.63
7.11 -0.74 0.00 1.19 -6.48 0.00

chol(Σ1)× 100
18.06 22.40
-0.93 6.62 -3.25 5.35
0.17 0.02 2.98 0.86 1.82 3.72

Panel B: 3-factor models with 2 volatility factors
A2(3) AA2(3)

α
-1.45 -0.18
8.04 4.61

β
1.06 2.98 -7.28 1.00 -1.37 -1.53
0.99 1.97 7.42 0.99 -1.46 1.86

chol(Σ0)× 100
4.57 38.25
1.25 0.21 22.82 8.71
0.97 -0.62 0.00 3.29 -9.61 0.00

chol(Σ1)× 100
15.08 20.86
-2.73 5.63 -4.75 0.34
-1.15 -1.33 0.93 -0.14 -1.54 2.08

chol(Σ2)× 100
11.22 6.44
2.97 0.32 2.60 0.21
2.66 -0.94 0.00 1.92 -0.23 0.00

Table 4: 3-factor models: conditional variance parameter estimates.

appear numerically similar to the affine models – the distinction between the two classes of
models is fundamental and practically consequential.

As emphasized by Joslin and Le (2021), in affine models the volatility loading vector β
must satisfy a left eigenvector constraint with respect to both the risk-neutral and physical
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feedback matrices. For instance, in the A1(3) model, since the risk-neutral matrix KQ
1 is

tightly identified by the cross-section of bond yields, the admissible choices for β are essentially
limited to the three left eigenvectors of KQ

1 . This severely restricts the model’s flexibility in
selecting empirically optimal volatility structures.

By contrast, our almost affine models are free from this restriction. Without the left
eigenvector constraint, β can be chosen from an infinite set of 3 by 1 vectors of loadings,
allowing the model to better align with the empirical volatility dynamics observed in the data.
While in some settings, imposing theoretically motivated restrictions may aid identification,
in this context, the eigenvector constraint lacks clear economic justification and instead
hampers the model’s ability to identify the volatility factors that offer the best empirical fit.

This distinction is clearly reflected in the parameter estimates reported in Table 4. Panel
A compares the β vectors estimated for the A1(3) and AA1(3) models. The affine model, out
of the three choices of left eigenvectors of KQ

1 , picks a β that combines the level and slope
factors with positive weights. In contrast, the almost affine model – unconstrained in its
choice – assigns a positive weight to the level factor and a negative weight to the slope factor.
A similar pattern emerges in Panel B, which reports results for the two-volatility-factor
models A2(3) and AA2(3). The increased flexibility of the almost affine models leads to
materially different volatility factor structures that better reflect the dynamics present in the
data.

The differences in volatility factor structures are further corroborated by Figure 2, which
plots the one-month-ahead conditional volatility of the 5-year and 10-year yields as implied
by the affine models alongside those generated by the almost affine models.

While both model classes capture broadly similar long-term trends in yield volatility, closer
inspection reveals notable distinctions –especially in the two-volatility-factor specifications.
The almost affine model AA2(3), benefiting from greater flexibility in the specification of
volatility factors, produces yield volatilities that exhibit significantly richer time variation. In
contrast, the affine counterpart A2(3), constrained by the left eigenvector condition, yields a
comparatively smoother and more muted volatility profile. These differences are particularly
evident during historically turbulent periods such as the early 1980s, early 2000s, and around
2020. In these episodes, the AA2(3) model exhibits sharper volatility adjustments, indicating
a greater capacity to capture abrupt shifts in the macro-financial environment.

These features underscore the empirical advantage of relaxing the structural constraints
embedded in affine models. By permitting a more flexible mapping between the yield
factors and the volatility process, the almost affine specification more effectively captures the
dynamic behavior of yield volatilities across the term structure, particularly during periods
of heightened uncertainty.

5.4 Approximation quality

As discussed in Section 3.2, our almost affine models imply that yields are approximately
linear in the state variables, i.e.,

Yt ≈ AP +BPPt.
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Figure 2: One month ahead yield volatility in basis points implied by 3-factor models with
volatility

A key question is how accurate this linear approximation is in practice. To assess this, we
take each estimated almost affine model and simulate 50,000 paths under the risk-neutral
measure at the start of each calendar year in our sample. Using these simulated paths, we
compute the n-period zero coupon bond prices based on the expression:

EQ
t [exp(−rt − rt+1 − ...− rt+n−1)],

and then compute the corresponding n-period zero-coupon yield. Given the large number of
simulations, the associated Monte Carlo noise is negligible, allowing us to treat the simulated
yields as accurate benchmarks for the true yields implied by the model. We then compare
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these benchmark yields with those generated by the linear approximation and interpret the
absolute differences as approximation errors.

AA1(3) AA2(3)

6-month 3-year 5-year 10-year 6-month 3-year 5-year 10-year

mean 0.01 0.44 0.74 0.59 0.02 0.44 0.75 0.58
std 0.01 0.15 0.20 0.10 0.01 0.15 0.18 0.08
min 0.00 0.13 0.21 0.14 0.00 0.10 0.25 0.30
10th percentile 0.00 0.24 0.48 0.46 0.01 0.23 0.50 0.48
median 0.01 0.47 0.78 0.61 0.02 0.47 0.79 0.60
90th percentile 0.03 0.62 0.96 0.69 0.04 0.61 0.93 0.65
max 0.04 0.72 1.08 0.69 0.05 0.70 1.04 0.66

Table 5: 3-factor Almost Affine models: summary statistics of linear approximation absolute
errors in basis points.
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Figure 3: Time series of linear approximation absolute errors in basis points implied by
3-factor Almost Affine models.

Table 5 reports summary statistics of the absolute approximation errors (in basis points)
across four maturities – 6-month, 3-year, 5-year, and 10-year – under the AA1(3) and AA2(3)
models. Across both specifications, the approximation errors are remarkably small, typically
well below 1 basis point. For short maturities, such as the 6-month yield, errors are essentially
negligible, with mean values around 0.01-0.02 basis points and maximum errors no greater
than 0.05 basis points.

As expected, the approximation error increases slightly with maturity, peaking at the
5-year horizon, where the mean error reaches approximately 0.74–0.75 basis points. Even
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so, the 90th percentile and maximum errors remain under 1.1 basis points, confirming the
economic insignificance of the approximation errors across the entire yield curve.

Interestingly, approximation accuracy is highly comparable between the AA1(3) and
AA2(3) models. The addition of a second volatility factor in AA2(3) does not worsen the
quality of the approximation. In fact, the 10-year pricing errors in this model are slightly
smaller at the upper tail of the error distribution.

These findings are reinforced by Figure 3, which displays the time series of approximation
errors across maturities for both models. Errors are stable over time and show no signs of
clustering or drift. Some volatility in approximation error is visible for the longer-maturity
yields (5-year and 10-year), but even in these cases, the fluctuations in approximation errors
are modest. For the 6-month yield, errors hover near zero throughout the entire sample.

Importantly, the approximation remains robust even during historically volatile periods,
such as the early 1980s and the 2020 COVID-19 crisis. The small magnitude and consistent
behavior of the approximation errors across regimes demonstrate the reliability and numerical
stability of the linearized pricing solution used in our almost affine models.

Table 5 and Figure 3 together validate the linear approximation as a highly accurate and
tractable solution method for pricing bonds in our framework. The negligible magnitude of
the errors ensures that our empirical findings are not driven by approximation artifacts.

5.5 Statistical model selection criteria

A0(3) A1(3) AA1(3) A2(3) AA2(3)

llk 21693 162 331 164 381
# of parameters 23 1 9 1 18
AIC -43339 -322 −644∗ -325 −727∗

AICc -43338 -322 −642∗ -325 −723∗

BIC -43237 -317 −604∗ -321 −647∗

Table 6: 3-factor models: log likelihood scores, number of parameters, and fitness scores
relative to the constant-volatility model A0(3).

Table 6 reports the log-likelihood values, Akaike Information Criterion (AIC), corrected
AIC (AICc), and Bayesian Information Criterion (BIC) for the pure Gaussian model A0(3).
For the affine and almost affine models, we present the improvements in these scores relative to
A0(3), to highlight the gains from incorporating stochastic volatility and structural flexibility.

Across all criteria, introducing time variation in volatility leads to substantial improvements
over the constant-volatility benchmark. Even the most parsimonious affine model with
one volatility factor (A1(3)) significantly outperforms A0(3), underscoring the empirical
importance of incorporating stochastic volatility.

However, holding the number of volatility factors fixed, the almost affine models consis-
tently achieve the best performance. For both one-factor and two-factor specifications, the
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almost affine variants (AA1(3) and AA2(3)) dominate their affine counterparts in terms of
likelihood-based metrics.

While it is true that the almost affine models require a greater number of parameters –
particularly when compared to the highly constrained affine models – both AIC and BIC
explicitly penalize model complexity. The fact that AA1(3) and AA2(3) still emerge with the
lowest AIC, AICc, and BIC scores highlights the strength of their empirical fit despite the
increase in model flexibility. Among the two almost affine models, AA2(3) appears to have
the edge, producing the best overall fit according to all three criteria.

The results for the four-factor models, reported in Section B.5, are largely consistent.
While the almost affine models continue to outperform their affine counterparts, all selection
criteria display a strong preference for specifications with only one volatility factor. This
suggests that introducing a second volatility factor may yield diminishing returns in terms of
statistical fit, even within the more flexible modeling framework.

It is important to emphasize, however, that these model selection metrics are purely
statistical. In the next section, we shift focus to the economic implications of the almost
affine framework, evaluating how these models perform relative to their affine counterparts in
capturing economically meaningful yield dynamics.

6 Predictive regressions and term premium decompo-

sition

6.1 LPY(i) regressions: conditional mean dynamics
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Figure 4: LPY(i) regression coefficients

Figure 4 plots the coefficients from the LPY(i) regressions in Equation (1), comparing
model-implied values from various estimated affine and almost affine models to the empirical
coefficients (solid black line). These regressions serve as a valuable diagnostic for assessing
how well the models capture the conditional mean dynamics of bond yields – specifically, the
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predictive relationship between yield slopes and future changes in yields across the maturity
spectrum.

Consistent with previous findings (e.g., Dai and Singleton (2002)), the pure affine models
struggle to replicate the empirical LPY(i) pattern, particularly at longer maturities. The
model-implied coefficients from the A1(3) and A2(3) specifications tend to be overly flat and
fail to match the steadily declining profile observed in the data. This shortcoming reflects the
well-documented rigidity of the affine structure under no-arbitrage constraints – a limitation
examined in detail by both Dai and Singleton (2002) and Joslin and Le (2021).

By contrast, the almost affine models perform significantly better. Both AA1(3) and
AA2(3) closely track the empirical LPY(i) coefficients across the maturity range and perform
on par with the pure Gaussian benchmark A0(3), which itself provides a strong fit to the
empirical pattern. These results highlight the value of relaxing the common eigenvector con-
straint imposed by traditional affine models, thereby enabling the almost affine specifications
to better capture realistic predictive dynamics in the yield curve.

The four-factor affine models, A1(4) and A2(4), show clear improvements over their
three-factor counterparts. For maturities up to five years, their implied LPY(i) coefficients
are broadly comparable to those produced by the almost affine and Gaussian models, sug-
gesting that the inclusion of a fourth yield factor increases flexibility in capturing short- and
medium-term yield predictability. However, beyond the five-year horizon, their performance
again deteriorates, deviating from the empirical pattern. This highlights the importance of
evaluating LPY(i) regressions across the full maturity spectrum; diagnostics focused only on
short maturities – as is occasionally seen in prior studies – may yield an incomplete or even
misleading picture of a model’s adequacy.

An additional observation concerns the role of volatility factor dimensionality. In the
three-factor affine models, introducing a second volatility factor appears to degrade the
model’s ability to match the empirical LPY(i) pattern. In contrast, within the four-factor
affine framework, the addition of a second volatility factor yields modest improvements,
particularly at longer maturities. This contrast suggests that the common left eigenvector
constraint imposed by pure affine models can lead to a nuanced and potentially complex
interaction between model dimensionality and volatility structure in shaping the dynamics of
yields.

In contrast, the four-factor almost affine models, AA1(4) and AA2(4), align remarkably
well with the empirical LPY(i) coefficients across virtually all maturities. Their consistent
performance further demonstrates the benefits of loosening the structural constraints inherent
in traditional affine specifications.

The superior performance of the almost affine models can be attributed to two main
factors. First, they relax the admissibility-induced constraint that forces the risk-neutral
and physical feedback matrices to share a common left eigenvector basis. By design, this
structural relaxation allows the almost affine models far greater flexibility in specifying the
time-series dynamics of bond yields. See Joslin and Le (2021) for a more detailed discussion
of this point.

Second, and slightly more subtly, the almost affine models afford greater freedom in
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selecting the volatility factors. Specifically, the volatility loading vector β is unrestricted and
can be chosen freely from the full N -dimensional space. This flexibility enables the models
to better capture the volatility dynamics of yields. Within the context of stochastic volatility
term structure models, improved identification of yield volatility enhances the efficiency of
the overall estimation process. In turn, this gives rise to sharper identification of model
parameters, including those governing the conditional mean dynamics. This mechanism is
analogous to the efficiency gains achieved in generalized least squares relative to ordinary
least squares, where optimal weighting of more informative signals leads to more precise
parameter estimates.

6.2 LPY(ii) regressions: short rate forecasts efficiency

Panel A: 3-factor models
PC1 PC2 PC3

A0(3) 0.991 0.878 0.129
A1(3) 0.412 0.004∗∗∗ 0.032∗∗

A2(3) 0.202 0.047∗∗ 0.128
AA1(3) 0.814 0.299 0.313
AA2(3) 0.736 0.873 0.340

Panel B: 4-factor models
PC1 PC2 PC3 PC4

A0(4) 0.998 0.952 0.246 0.001∗∗∗

A1(4) 0.784 0.411 0.322 0.000∗∗∗

A2(4) 0.053∗ 0.680 0.026∗∗ 0.008∗∗∗

AA1(4) 0.933 0.513 0.174 0.524
AA2(4) 0.869 0.533 0.021∗∗ 0.015∗∗

Table 7: Efficiency test of short rate forecasts

Figure 5 presents the coefficient estimates from the LPY(ii) regressions, based on Equa-
tion (3), alongside those from our proposed alternative formulation in Equation (5). To
distinguish between the two, we refer to the original specification from Dai and Singleton
(2002) as the D-S representation, shown in subplots (a) and (c), and to our alternative
formulation as the J-L representation, shown in subplots (b) and (d).

Recall that the LPY(ii) regression is based on yields net of term premiums; thus, if a
model accurately captures term premium dynamics, the expectations hypothesis should hold,
and the regression coefficients should equal one across all maturities. Comparing the D-S and
J-L representations reveals that they are nearly identical, with any differences attributable to
yield pricing errors, which are typically small.9 This near-equivalence allows us to rely on the

9In fact, when pricing errors are zero, the two specifications produce identical coefficients.
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Figure 5: LPY(ii) regression coefficients

J-L representation and interpret LPY(ii) regressions as reflecting the efficiency of a model’s
short rate forecasts with respect to slope-based predictive signals. It is important to emphasize
that this interpretation is conceptually orthogonal to a model’s LPY(i) performance.

Turning to the results, the three-factor almost affine models (AA1(3), AA2(3)) again
outperform their affine counterparts. Their LPY(ii) coefficients lie close to the unit line,
performing on par with the pure Gaussian model A0(3). In contrast, the A2(3) model—with
two volatility factors—deviates substantially, indicating weaker short rate forecast efficiency.

The four-factor models reveal a particularly compelling picture. All models – except
possibly A1(4) – deliver LPY(ii) coefficients that closely track the unit line. Even the A1(4)
model performs reasonably well, certainly better than its three-factor counterpart, A1(3).
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Dai and Singleton (2002) interpret strong LPY(ii) performance by four-factor affine models
as evidence that they better capture risk-neutral yield dynamics, whereas three-factor models
do not. However, this interpretation seems at odds with the fact that yield pricing errors are
uniformly small – less than 10 basis points –across all models.

The J-L representation provides a more plausible interpretation. Specifically, the A1(3)
and A2(3) models appear to generate short rate forecasts that underutilize slope information.
In contrast, adding a fourth yield factor appears to equip the affine models with additional
flexibility, enabling them to incorporate slope-based predictive signals more effectively.

This raises an interesting question: how can the four-factor affine models, which fail to
capture conditional mean dynamics in LPY(i) regressions (as is seen in Figure 4), nonetheless
produce efficient short rate forecasts across a wide range of horizons? The answer lies in
the nature of the LPY(ii) regression, which focuses exclusively on information embedded in
yield slopes. This naturally leads to a broader question: what about information in other
components of the yield curve, such as level, curvature, or higher-order factors?

To address this, we regress forecast revisions of the short rate onto each principal component
of the yield curve as in Equation (7), and report the p-values of joint significance tests over
40 forecast horizons ranging from 3 months, 6 months, ... to 10 years. If a model fully
incorporates the information from a given factor, the corresponding p-value should be large
(insignificant).

Table 7 reports these p-values. Panel A shows that all three-factor models efficiently
incorporate information from the level factor. However, the affine models A1(3) and A2(3)
exhibit statistically significant inefficiencies with respect to slope, and in the case of A1(3), also
curvature. In contrast, the almost affine models AA1(3) and AA2(3) appear to incorporate all
three factors efficiently in forming their short rate forecasts. The evidence here corroborates
what we have seen in the top row of Figure 5.

Panel B reveals that all four-factor models efficiently process slope information, consistent
with the bottom row of Figure 5. However, all three affine models – including the Gaussian
model A0(4) – struggle to fully utilize higher-order factors such as PC4. The A2(4) model
in particular performs poorly, with significant inefficiencies in level, curvature, and PC4.
Interestingly, even the almost affine model AA2(4), with two volatility factors, fails to
synthesize information from curvature and PC4 fully. By contrast, the AA1(4) model emerges
as the most efficient, being the only four-factor model that incorporates all four principal
components without significant forecast inefficiencies. This result aligns with our model
selection findings in Section B.5, where all statistical criteria favor the AA1(4) model as the
best-performing four-factor specification.

Overall, this subsection has examined an alternative LPY(ii) representation that offers a
sharper interpretation: the regression serves as a test of short rate forecast efficiency. However,
we also caution that such regressions are much more meaningful when they account for the
full informational content of the yield curve.
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6.3 Term premium analysis

An n-period bond yield is often decomposed into two components: an expectations hypothesis
(EH) term, representing the expected average of future short rates over the bond’s life, and a
term premium component:

yn,t = EP
t

[
1

n

n−1∑
i=0

rt+i

]
+ TPn,t. (28)

Up to Jensen effects, the term premium can be written as the difference between the risk-
neutral and physical expectations of the average future short rate:

TPn,t ≈ (EQ
t − EP

t )

[
1

n

n−1∑
i=0

rt+i

]
. (29)

This expression makes it clear that the term premium reflects the compensation investors
require for bearing interest rate risks. Under risk neutrality, where P ≡ Q, the term premium
would be negligible.

Understanding and accurately estimating the dynamics of the term premium is essential
for both policymakers and market participants. For investors, this decomposition informs
fixed-income pricing, risk management, and the interpretation of monetary policy signals. For
central banks, particularly in implementing monetary policies targeting inflation and output
stabilization, misattributing shifts in long-term yields to changing expectations rather than
term premiums may result in misguided policy responses. Importantly, term premiums are
sensitive to broader financial conditions, including risk sentiment, market volatility, and the
global demand for safe assets, making them a key barometer of market stress and uncertainty.
Notably, both the Federal Reserve Bank of New York and the Federal Reserve Bank of San
Francisco regularly publish model-based estimates of term premiums on their respective
websites.

In practice, term premiums are often estimated using variants of the pure Gaussian affine
term structure model, A0(N). The main advantage of this model is its demonstrated ability
to match the conditional mean dynamics of bond yields. However, a critical limitation is
that volatility is assumed constant over time. As a result, any observed variation in term
premiums – say, a 20 basis point increase in the 10-year term premium – is attributed entirely
to changes in investors’ risk preferences rather than changes in the quantity of risk. This
assumed constancy in yield volatility is clearly counter-factual.

While affine models with stochastic volatility, such as A1(N) or A2(N), allow for time-
varying second moments, they tend to fit the conditional means of yields poorly. Consequently,
they likely produce unreliable decompositions of yields into EH and TP components, limiting
their usefulness in policy contexts.

As demonstrated in the previous subsections, our proposed almost affine models overcome
these limitations. They match the conditional mean dynamics of yields as effectively as
the pure Gaussian models, while also offering substantially greater flexibility in capturing
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time-varying volatility of yields. In this section, we use our estimated almost affine models to
generate term premium estimates consistent with Equation (28).

We then ask: To what extent can variations in these estimated term premiums be
attributed to changes in the quantity of risk? To address this, we examine the model-implied
conditional volatility of the average short rate over the bond’s horizon:

σt

[
1

n

n−1∑
i=0

rt+i

]
. (30)

While alternative measures of risk quantity exist, this one aligns naturally with the term
premium decomposition in Equation (29) and provides a direct link between risk compensation
and model-implied uncertainty.

Figure 6 plots the 10-year term premium estimates and the corresponding measures of risk
quantity produced by the two preferred almost affine specifications – AA2(3) and AA1(4) –
alongside those from their respective pure affine counterparts, A2(3) and A1(4). The panels in
the top row focus on the 3-factor specifications. As shown in panel (a), the almost affine model
AA2(3) generates 10-year term premium estimates that differ markedly from those of the pure
affine model A2(3), especially during periods of heightened market stress. These differences
are most evident during the early 1980s, the early 2000s, and the COVID-19 period, where
the AA2(3) model tends to imply both higher and more volatile term premiums. Turning to
panel (b), the divergence is even more striking in the estimated quantity of risk: the AA2(3)
model exhibits a more pronounced response to changing market conditions, especially during
the 1970s inflation shock, the Global Financial Crisis, and COVID-19, reflecting its ability to
capture time-varying volatility.

In contrast, the 4-factor models (panels c and d) seem to show more alignment in term
premium estimates. As seen in panel (c), the term premiums implied by AA1(4) and A1(4)
are broadly similar in level and dynamics over most of the sample period. However, notable
deviations occur during volatile episodes such as the Paul Volcker disinflation period, the
Great Recession, and the COVID-19 shock. During these times, differences of up to 100 basis
points (Volcker and Great Recession) and around 50 basis points (COVID) emerge. Panel (d)
reveals that the quantity of risk implied by the pure affine model A1(4) is consistently higher
and less responsive to economic conditions compared to AA1(4). For example, during the
Great Recession, the A1(4) model’s risk quantity peaks at nearly twice the level suggested by
AA1(4), suggesting that the pure affine model may overstate the level of perceived risk due
to its constraint in selecting volatility instruments.

Next, we regress model-implied term premiums on their corresponding estimates of the
quantity of risk, measured by σt, and report the adjusted R2 statistics in Table 8. We
interpret these R2 values as the share of term premium variation that can be attributed to the
quantity of risk channel. To account for potential nonlinearity, we also consider regressions
on σ2

t as well as regressions on both σt and σ2
t .

Table 8 reveals a striking contrast between the almost affine and pure affine models.
Across all dimensions – whether one considers 3- or 4-factor models, or focuses on the 5-year
or 10-year horizons – the almost affine specifications attribute only a small portion of the
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Figure 6: 10-year term premiums and the corresponding quantity of risks implied by preferred
almost affine models.

variation in term premiums to changes in the quantity of risk.
The most dramatic example is the AA2(3) model, which produces adjusted R2 values

that are essentially zero (or even slightly negative), suggesting that the quantity of risk
plays virtually no explanatory role in this specification. In sharp contrast, the corresponding
pure affine model, A2(3), assigns over 80% of the term premium variation to the volatility
channel for both maturities. This difference underscores a key implication of our modeling
approach: by relaxing the rigid structure of affine models and allowing for more flexible
volatility dynamics, term premiums are less prone to be mechanically linked to fluctuations
in the quantity of risk.
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5-year yield 10-year yield

σt σ2
t σt + σ2

t σt σ2
t σt + σ2

t

Panel A: 3-factor models:
A0(3) -0.16 -0.16 -0.32 -0.16 -0.16 -0.32
A1(3) 58.54 57.08 57.02 67.29 65.71 65.66
A2(3) 83.20 83.45 83.43 83.18 83.42 83.39
AA1(3) 2.52 3.24 3.08 1.14 2.13 1.97
AA2(3) 0.08 0.32 0.16 -0.14 -0.11 -0.27

Panel B: 4-factor models:
A0(4) -0.16 -0.16 -0.32 -0.16 -0.16 -0.32
A1(4) 51.31 49.78 49.70 64.99 63.26 63.21
A2(4) 59.21 57.59 57.52 71.65 70.20 70.15
AA1(4) 17.07 18.47 18.34 17.07 19.53 19.40
AA2(4) 8.04 8.62 8.48 7.79 9.42 9.28

Table 8: In-sample explantory power of quantity of risk (adjusted R-squared) for term
premiums implied by almost affine models.

Turning to the 4-factor case, we observe similar, though somewhat less extreme, patterns.
For example, at the 10-year horizon, the pure affine model A1(4) attributes approximately
63–64% of term premium variation to the volatility channel, while the almost affine model
AA1(4) yields a substantially lower R2 of about 17–19%. These findings suggest that while
introducing an additional factor in the almost affine setting improves explanatory power, a
large share of the time variation in term premiums remains orthogonal to the quantity of risk
measures used here.

Table 9 reports the population analogs of the adjusted R2 statistics presented earlier in
Table 8. Rather than relying on in-sample estimates, we use each fitted model to simulate
a long sample – comprising one million months of yields – and then estimate the same
regressions of term premiums on risk quantity measures using the simulated data. This
procedure provides a slightly cleaner view of the models’ implications, uncontaminated by
in-sample sampling noise.

The results in Table 9 broadly reinforce the findings from the in-sample analysis. If
anything, the differences between the models become even more pronounced. For instance,
the proportion of term premium variation explained by the quantity of risk in the pure affine
model A1(4) rises substantially in population, reaching approximately 90% for the 10-year
maturity. By contrast, the corresponding statistic for the almost affine model AA1(4) falls to
just 12%.

Overall, this analysis highlights that pure affine models may overstate the role of volatility
in driving term premiums due to their restrictive structure. The almost affine models, by
decoupling volatility dynamics from the cross-section of yields, offer a more nuanced and
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5-year yield 10-year yield

σt σ2
t σt + σ2

t σt σ2
t σt + σ2

t

Panel A: 3-factor models:
A0(3) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
A1(3) 79.57 84.37 84.37 82.27 86.49 86.49
A2(3) 78.36 79.89 79.89 78.23 79.35 79.34
AA1(3) 10.84 9.40 9.40 6.77 5.77 5.77
AA2(3) 4.03 3.99 3.99 1.43 1.50 1.50

Panel B: 4-factor models:
A0(4) -0.00 -0.00 -0.00 -0.00 -0.00 -0.00
A1(4) 81.85 87.42 87.42 87.27 92.14 92.14
A2(4) 53.98 54.39 54.39 73.62 73.92 73.92
AA1(4) 13.95 13.31 13.31 12.50 12.12 12.12
AA2(4) 13.79 16.98 16.98 14.09 17.01 17.01

Table 9: In population explantory power of quantity of risk (adjusted R-squared) for term
premiums implied by 4-factor models.

arguably more realistic view of the sources of term premium variation.
A natural question that arises is: what is the economic intuition behind the muted

relationship between the term premium and the quantity of risk? After all, the basic “high
risk, high return” principle would seem to support the high R2 values implied by standard
affine models. However, it’s important to recognize that Treasury bonds differ from typical
risky assets in at least one key respect: in bad times, they are widely regarded as safe-haven
assets.

In adverse economic states, Treasury bonds provide insurance-like payoffs, delivering
values precisely when other assets perform poorly. This insurance characteristic could imply
negative risk premiums – higher volatility can be associated with more negative compensation.
In contrast, during good times, bonds must compete with other risky investments and tend
to offer positive risk premiums. That is, in good states of the world, the usual positive
risk-return relationship reemerges.

As a result, the relationship between bond risk premiums and volatility, when estimated
over long historical samples, reflects a mix of these opposing dynamics: negative in bad times,
positive in good times. Depending on the relative frequency and magnitude of these regimes,
the average relationship may appear quite weak – or even statistically insignificant. This
averaging effect helps explain why a strong link between risk and return, as suggested by
standard affine models, may not be observed in practice.
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7 Concluding remarks

This paper has introduced and empirically evaluated a new class of almost affine term
structure models that relax the restrictive volatility assumptions inherent in traditional affine
frameworks. By decoupling the volatility dynamics from the cross-section of yields, our
models achieve a more realistic representation of bond yield behavior, particularly during
periods of heightened market volatility.

Our findings demonstrate that the almost affine models retain the desirable features of pure
Gaussian models in capturing the conditional mean dynamics of yields, while significantly
improving the ability to accommodate time-varying second moments. Importantly, we
show that the resulting term premium estimates are less mechanically tied to fluctuations
in volatility, providing a more nuanced understanding of the underlying drivers of risk
compensation in bond markets.

The decomposition of term premiums reveals substantial differences between the almost
affine and traditional affine models, especially during turbulent episodes such as the Great
Recession and the COVID-19 crisis. Moreover, the quantity of risk explains a markedly smaller
share of term premium variation in our proposed framework, highlighting the importance of
separating volatility dynamics from the pricing kernel.

Overall, the almost affine approach offers a flexible and empirically sound alternative
for modeling the term structure of interest rates. It opens the door to richer economic
interpretations and more robust empirical analysis, particularly in environments characterized
by volatile and nonlinear dynamics. Future work may explore extensions to macro-finance
settings, multi-country models, or applications in monetary policy and risk management.
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A Further estimation details

A.1 Parameterization

In terms of parameterization, the insight rorm JSZ is that we use parameters that are tied to
observable quantities. That is, Σi,P is much more easily identified in estimation than Σi,X .
Nevertheless, we cannot use Σi,P directly as primitive parameters because we cannot go from
Σi,P back to Σi,X in a straightforward manner. Unlike the pure Gaussian case, the loadings
BX are dependent on both KQ

1X as well as the parameters that govern the time-variation of
the conditional variances, including Σi,X and βX . Therefore, there is a nonlinear mapping
between Σi,P and Σi,X that is hard to invert.

To circumvent the above issue, we consider a corresponding set of convexity-adjusted
yields:

Y c
t = Ac

X +Bc
XXt (31)

where the loadings are obtained from the same risk-neutral dynamics but ignoring convexity
effects. This is essentially the same pricing equation obtained by setting Σi,X to zeros. In
this case, Bc

X is only dependent on KQ
1X .

We let:

Σc
i,P =(WBc

X)Σi,X(WBc
X)′, (32)

βc
P =βX(WBc

X)−1 (33)

being the convexity-adjusted counterparts to Σi,P and βP and use these as primitive param-
eters. These parameters correspond to observable portfolios of yields (that are convexity-
adjusted) and thus should be easily identified.

Finally, to fix the scaling of Z, we normalize βc
P such that its first column as an absolute

value of ones. If P is the vector of yield PCs, then the loading of each volatility instrument
on the level factor is either 1 or -1.

A.2 Recap

The parameter set includes: rQ∞, K
Q
1X , αP , β

c
P ,Σ

c
i,P , K

P
0,P , K

P
1,P . From these parameters, the

model can be constructed in the following steps:

• From KQ
1X , one can compute the convexity-adjusted yields loadings Bc

X .

• With Bc
X and Σc

i,P , we can compute Σi,X : Σi,X = (WBc
X)−1Σc

i,P(WBc
X)′−1

• Similarly, with Bc
X and βc

P , we can compute βX : βX = βc
P(WBc

X)

• With rQ∞, K
Q
1X , βX ,Σi,X , we can compute the yield loadings BX and the intercept terms

AX as a linear function of αX . Having αP , we can back out the corresponding value for
αX from the equation: αP = αX − βPWAX .

• Equipped with the yield loadings BX , we can compute Σi,P = (WBX)Σi,X(WBX)′ and
βP = βX(WBX)−1 and then, using KP

0,P , K
P
1,P , evaluate the time series density.

40



A.3 Concentrate out rQ∞ and σe

Assume that we can write AP as linear in rQ∞:

AP = H0 +Hrr
Q
∞ (34)

then the pricing errors will be linear in rQ∞

pe,t+1 = We(Yt+1 − (H0 +Hrr
Q
∞)−BPPt+1). (35)

Assuming these pricing errors are iid gaussian with one common variance σ2
e , the optimal

estimate for rQ∞ can be obtained from:

(WeHr)
′ET [We(Yt+1 − (H0 +Hrr

Q
∞)−BPPt+1)] = 0 (36)

which implies:

rQ∞ =
(WeHr)

′WeET [Yt+1 −H0 −BPPt+1]

(WeHr)′WeHr

. (37)

Given the optimal estimate for rQ∞, we can compute pe and then the optimal estimate for
σe as:

σ2
e = ET [pe,t+1(:)

2]. (38)

Now, how do we compute H0 and Hr? Note that AX is linear in the intercept parameters.
In particular, we can write:

AX = A0 + Arr
Q
∞ + AaαX . (39)

Plus,

αP =αX − βPWAX , (40)

=αX − βPW (A0 + Arr
Q
∞ + AaαX) (41)

which implies:

αX = (I − βPWAa)
−1(αP + βPW (A0 + Arr

Q
∞)). (42)

Substitute this back into AX we have:

AX =A0 + Arr
Q
∞ + Aa(I − βPWAa)

−1(αP + βPW (A0 + Arr
Q
∞)), (43)

=A0 + Aa(I − βPWAa)
−1(αP + βPWA0)︸ ︷︷ ︸

H0,X

+ (Ar + Aa(I − βPWAa)
−1βPWAr)︸ ︷︷ ︸

Hr,X

rQ∞.

(44)

Since AP = AX −BPWAX , it is straightforward to see that:

H0 = H0,X −BPWH0,X , (45)

Hr = Hr,X −BPWHr,X . (46)
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B Parameter estimates of 4-factor models

B.1 Conditional mean parameters

Risk-neutral parameters Time-series parameters

KQ
0 KQ

1 KP
0 KP

1

A0(4)

0.042 0.999 0.082 0.236 -0.444 0.169 0.994 -0.019 0.027 0.405
-0.033 -0.002 0.972 -0.234 0.411 0.001 0.002 0.961 -0.138 0.182
-0.022 -0.001 0.005 0.917 0.292 -0.066 -0.000 0.002 0.866 0.008
0.017 0.000 -0.004 0.026 0.892 -0.024 0.000 -0.003 0.008 0.701

A1(4)

-0.018 1.001 0.090 0.197 -0.457 0.016 0.995 0.005 0.048 -0.547
0.020 -0.003 0.965 -0.197 0.424 -0.019 0.000 0.963 -0.181 0.053
0.011 -0.001 0.000 0.940 0.299 -0.004 -0.001 -0.005 0.909 0.231
-0.009 0.000 0.000 0.009 0.883 -0.005 0.000 -0.003 0.019 0.854

AA1(4)

0.038 1.000 0.082 0.235 -0.443 0.158 0.995 -0.003 0.180 0.065
-0.036 -0.002 0.972 -0.234 0.407 0.025 0.001 0.954 -0.143 0.234
-0.023 -0.001 0.006 0.918 0.290 -0.018 -0.001 -0.007 0.903 0.082
0.018 0.000 -0.004 0.026 0.893 -0.022 -0.000 -0.001 -0.008 0.810

A2(4)

-0.016 1.001 0.094 0.214 -0.426 0.126 0.993 -0.012 0.077 -0.292
0.019 -0.003 0.961 -0.214 0.392 0.007 0.000 0.960 -0.161 0.181
0.010 -0.002 -0.002 0.930 0.278 -0.003 -0.000 -0.005 0.928 0.186
-0.009 0.001 0.002 0.016 0.898 -0.019 0.001 0.000 0.021 0.858

AA2(4)

0.037 1.000 0.080 0.236 -0.450 0.126 0.996 -0.013 0.191 -0.370
-0.039 -0.002 0.973 -0.237 0.410 0.054 0.001 0.954 -0.082 0.176
-0.023 -0.001 0.006 0.916 0.294 -0.022 -0.001 -0.007 0.908 0.026
0.018 0.000 -0.004 0.028 0.891 -0.019 -0.000 0.000 0.000 0.812

Table 10: 4-factor models: conditional mean parameter estimates.
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B.2 Conditional variance parameters

Panel A: 4-factor models with 1 volatility factor
A1(4) AA1(4)

α -1.60 -0.55

β 1.06 2.83 -9.12 -17.75 1.02 -0.91 -2.94 -9.98

chol(Σ0)× 100

29.75 38.18
11.42 0.17 19.84 6.70
7.24 0.59 0.02 2.35 -6.30 0.00
-0.14 0.20 -0.01 0.00 0.48 0.20 0.00 0.00

chol(Σ1)× 100

16.54 19.70
-1.57 5.71 -2.79 4.92
0.18 0.02 2.78 0.63 0.91 3.54
-0.16 0.11 -0.17 1.58 -0.33 -0.25 0.15 2.22

Panel B: 4-factor models with 2 volatility factors
A2(4) AA2(4)

α
-2.05 -0.69
20.74 11.91

β
1.05 2.15 -10.29 -25.96 1.05 -0.86 -3.10 -10.38
1.04 2.18 -27.25 30.09 1.08 -2.60 -15.03 -1.00

chol(Σ0)× 100

29.17 0.06
14.56 1.00 6.06 0.30
3.52 -1.63 1.57 -5.27 -0.03 0.00
0.96 0.99 -0.20 0.07 0.03 0.05 0.00 0.00

chol(Σ1)× 100

15.93 23.87
-2.54 4.34 0.55 5.20
0.19 0.14 1.47 1.37 2.57 1.66
-0.21 -0.19 1.05 0.66 -0.37 -1.04 1.58 0.01

chol(Σ2)× 100

2.76 0.02
1.37 0.87 0.51 4.31
0.89 -0.92 1.25 -1.46 -0.42 0.00
-0.27 0.63 -0.17 0.01 -0.19 0.66 0.00 0.00

Table 11: 4-factor models: conditional variance parameter estimates.
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B.3 Model-implied one-month ahead yields volatility
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Figure 7: One month ahead yield volatility in basis points implied by 4-factor models with
volatility
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B.4 Approximation quality

AA1(4) AA2(4)

6-month 3-year 5-year 10-year 6-month 3-year 5-year 10-year

mean 0.16 0.20 0.39 0.86 0.14 0.19 0.49 0.87
std 0.08 0.05 0.13 0.16 0.05 0.08 0.12 0.20
min 0.01 0.12 0.18 0.64 0.03 0.03 0.27 0.54
10th percentile 0.06 0.13 0.20 0.69 0.07 0.09 0.31 0.66
median 0.17 0.20 0.40 0.82 0.15 0.20 0.51 0.83
90th percentile 0.25 0.26 0.56 1.00 0.21 0.28 0.64 1.20
max 0.32 0.31 0.64 1.42 0.25 0.36 0.72 1.33

Table 12: 4-factor Almost Affine models: summary statistics of linear approximation absolute
pricing errors in basis points.
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Figure 8: Time series of linear approximation absolute pricing errors in basis points implied
by 4-factor Almost Affine models
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B.5 Statistical model selection criteria

A0(4) A1(4) AA1(4) A2(4) AA2(4)

llk 22130 187 429 171 389
# of parameters 36 3 14 3 28
AIC -44189 -369 −829∗ -336 −721∗

AICc -44184 -368 −825∗ -335 −711∗

BIC -44029 -356 −767∗ -322 −597∗

Table 13: 4-factor models: log likelihood (ll), number of parameters, and fitness scores relative
to the constant-volatility model A0(4).
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